Source code for RCAIDE.Library.Methods.Aerodynamics.Vortex_Lattice_Method.VLM


# VLM.py
# 
# Created:  Oct 2020, E. Botero
# Modified: May 2021, E. Botero   
#           Jul 2021, A. Blaufox     

# ----------------------------------------------------------------------
#  Imports
# ----------------------------------------------------------------------

# package imports 
import numpy as np 
from RCAIDE.Framework.Core import Data
from .compute_wing_induced_velocity      import compute_wing_induced_velocity
from .generate_vortex_distribution       import generate_vortex_distribution 
from .compute_RHS_matrix                 import compute_RHS_matrix 
from scipy.integrate import trapezoid
from copy import  deepcopy
# ----------------------------------------------------------------------
#  Vortex Lattice
# ----------------------------------------------------------------------

[docs] def VLM(conditions,settings,geometry): """Uses the vortex lattice method to compute the lift, induced drag and moment coefficients. The user has the option to discretize control surfaces using the boolean settings.discretize_control_surfaces. The user should be forwarned that this will cause very slight differences in results for 0 deflection due to the slightly different discretization. The user has the option to use the boundary conditions and induced velocities from either RCAIDE or VORLAX. See build_RHS in compute_RHS_matrix.py for more details. By default in Vortex_Lattice, VLM performs calculations based on panel coordinates with float32 precision. The user may also choose to use float16 or float64, but be warned that the latter can be memory intensive. The user should note that fully capitalized variables correspond to a VORLAX variable of the same name Assumptions: The user provides either global discretezation (number_spanwise/chordwise_vortices) or separate discretization (wing/fuselage_spanwise/chordwise_vortices) in settings, not both. The set of settings not being used should be set to None. The VLM requires that the user provide a non-zero velocity that matches mach number. For surrogate training cases at mach 0, VLM uses a velocity of 1e-6 m/s Source: 1. Miranda, Luis R., Robert D. Elliot, and William M. Baker. "A generalized vortex lattice method for subsonic and supersonic flow applications." (1977). (NASA CR) 2. VORLAX Source Code Inputs: geometry. reference_area [m^2] wing. spans.projected [m] chords.root [m] chords.tip [m] sweeps.quarter_chord [radians] taper [Unitless] twists.root [radians] twists.tip [radians] symmetric [Boolean] aspect_ratio [Unitless] areas.reference [m^2] vertical [Boolean] origin [m] fuselage. origin [m] width [m] heights.maximum [m] lengths.nose [m] lengths.tail [m] lengths.total [m] lengths.cabin [m] fineness.nose [Unitless] fineness.tail [Unitless] settings.number_of_spanwise_vortices [Unitless] <---| settings.number_of_chordwise_vortices [Unitless] <---| |--Either/or; see generate_vortex_distribution() for more details settings.wing_spanwise_vortices [Unitless] <---| settings.wing_chordwise_vortices [Unitless] <---| settings.fuselage_spanwise_vortices [Unitless] <---| settings.fuselage_chordwise_vortices [Unitless] <---| settings.use_surrogate [Unitless] settings.propeller_wake_model [Unitless] settings.discretize_control_surfaces [Boolean], set to True to generate control surface panels settings.use_VORLAX_matrix_calculation [boolean] settings.floating_point_precision [float16/32/64] conditions.aerodynamics.angles.alpha [radians] conditions.aerodynamics.angles.beta [radians] conditions.freestream.mach_number [Unitless] conditions.freestream.velocity [m/s] conditions.static_stability.pitch_rate [radians/s] conditions.static_stability.roll_rate [radians/s] conditions.static_stability.yaw_rate [radians/s] Outputs: results. CL [Unitless], CLTOT in VORLAX CDi [Unitless], CDTOT in VORLAX CM [Unitless], CMTOT in VORLAX CY [Unitless], Total y force coeff CRTOT [Unitless], Rolling moment coeff (unscaled) CL_mom [Unitless], Rolling moment coeff (scaled by b_ref) CNTOT [Unitless], Yawing moment coeff (unscaled) CN [Unitless], Yawing moment coeff (scaled by b_ref) CL_wing [Unitless], CL of each wing CDi_wing [Unitless], CDi of each wing cl_y [Unitless], CL of each strip cdi_y [Unitless], CDi of each strip alpha_i [radians] , Induced angle of each strip in each wing (array of numpy arrays) CP [Unitless], Pressure coefficient of each panel gamma [Unitless], Vortex strengths of each panel Properties Used: N/A """ # unpack settings---------------------------------------------------------------- pwm = settings.propeller_wake_model K_SPC = settings.leading_edge_suction_multiplier Sref = geometry.reference_area # unpack geometry---------------------------------------------------------------- # define point about which moment coefficient is computed if 'main_wing' in geometry.wings: c_bar = geometry.wings['main_wing'].chords.mean_aerodynamic x_mac = geometry.wings['main_wing'].aerodynamic_center[0] + geometry.wings['main_wing'].origin[0][0] z_mac = geometry.wings['main_wing'].aerodynamic_center[2] + geometry.wings['main_wing'].origin[0][2] b_ref = geometry.wings['main_wing'].spans.projected else: c_bar = 0. x_mac = 0. b_ref = 0. for wing in geometry.wings: if wing.vertical == False: if c_bar <= wing.chords.mean_aerodynamic: c_bar = wing.chords.mean_aerodynamic x_mac = wing.aerodynamic_center[0] + wing.origin[0][0] z_mac = wing.aerodynamic_center[2] + wing.origin[0][2] b_ref = wing.spans.projected x_cg = geometry.mass_properties.center_of_gravity[0][0] z_cg = geometry.mass_properties.center_of_gravity[0][2] if x_cg == 0.0: x_m = x_mac z_m = z_mac else: x_m = x_cg z_m = z_cg # unpack conditions-------------------------------------------------------------- aoa = conditions.aerodynamics.angles.alpha # angle of attack mach = conditions.freestream.mach_number # mach number ones = np.atleast_2d(np.ones_like(mach)) len_mach = len(mach) #For angular values, VORLAX uses degrees by default to radians via DTR (degrees to rads). #RCAIDE uses radians and its Units system. All algular variables will be in radians or var*Units.degrees PSI = conditions.aerodynamics.angles.beta PITCHQ = conditions.static_stability.pitch_rate ROLLQ = conditions.static_stability.roll_rate YAWQ = conditions.static_stability.yaw_rate VINF = conditions.freestream.velocity #freestream 0 velocity safeguard if not conditions.freestream.velocity.all(): if settings.use_surrogate: velocity = conditions.freestream.velocity velocity[velocity==0] = np.ones(len(velocity[velocity==0])) * 1e-6 conditions.freestream.velocity = velocity else: raise AssertionError("VLM requires that conditions.freestream.velocity be specified and non-zero") # --------------------------------------------------------------------------------------- # STEPS 1-9: Generate Panelization and Vortex Distribution # ------------------ -------------------------------------------------------------------- # generate vortex distribution (VLM steps 1-9) VD = generate_vortex_distribution(geometry,settings) if not VD.is_postprocessed: raise ValueError('postprocess_VD has not been called since the panels have been modified') # Unpack vortex distribution n_cp = VD.n_cp n_sw = VD.n_sw CHORD = VD.chord_lengths chord_breaks = VD.chordwise_breaks span_breaks = VD.spanwise_breaks RNMAX = VD.panels_per_strip LE_ind = VD.leading_edge_indices ZETA = VD.tangent_incidence_angle RK = VD.chordwise_panel_number exposed_leading_edge_flag = VD.exposed_leading_edge_flag YAH = VD.YAH*1. YBH = VD.YBH*1. XA1 = VD.XA1*1. XB1 = VD.XB1*1. YA1 = VD.YA1 YB1 = VD.YB1 ZA1 = VD.ZA1 ZB1 = VD.ZB1 XCH = VD.XCH XA_TE = VD.XA_TE XB_TE = VD.XB_TE YA_TE = VD.YA_TE YB_TE = VD.YB_TE ZA_TE = VD.ZA_TE ZB_TE = VD.ZB_TE SLOPE = VD.SLOPE SLE = VD.SLE D = VD.D # Compute X and Z BAR ouside of generate_vortex_distribution to avoid requiring x_m and z_m as inputs XBAR = np.ones(sum(LE_ind)) * x_m ZBAR = np.ones(sum(LE_ind)) * z_m VD.XBAR = XBAR VD.ZBAR = ZBAR # --------------------------------------------------------------------------------------- # STEP 10: Generate A and RHS matrices from VD and geometry # ------------------ -------------------------------------------------------------------- # Compute flow tangency conditions phi = np.arctan((VD.ZBC - VD.ZAC)/(VD.YBC - VD.YAC))*ones # dihedral angle delta = np.arctan((VD.ZC - VD.ZCH)/((VD.XC - VD.XCH)*ones)) # mean camber surface angle # Build the RHS vector rhs = compute_RHS_matrix(delta,phi,conditions,settings,geometry,pwm) RHS = rhs.RHS*1 # this matches numpy=1.26 in terms of dimension ONSET = rhs.ONSET*1 # Build induced velocity matrix, C_mn # This is not affected by AoA, so we can use unique mach numbers only m_unique, inv = np.unique(mach,return_inverse=True) m_unique = np.atleast_2d(m_unique).T inv = inv.reshape(-1) # this is done to ensure compatibility across numpy1.0 and numpy2.0 C_mn_small, s, RFLAG_small, EW_small = compute_wing_induced_velocity(VD,m_unique,compute_EW=True) C_mn = C_mn_small[inv,:,:,:] RFLAG = RFLAG_small[inv,:] EW = EW_small[inv,:,:] # Turn off sonic vortices when Mach>1 RHS = RHS*RFLAG # To ensure compatibility for np.linalg.solve across numpy1.0 and numpy2.0 RHS = np.atleast_3d(RHS) # Build Aerodynamic Influence Coefficient Matrix use_VORLAX_induced_velocity = settings.use_VORLAX_matrix_calculation if not use_VORLAX_induced_velocity: A = np.multiply(C_mn[:,:,:,0],np.atleast_3d(np.sin(delta)*np.cos(phi))) \ + np.multiply(C_mn[:,:,:,1],np.atleast_3d(np.cos(delta)*np.sin(phi))) \ - np.multiply(C_mn[:,:,:,2],np.atleast_3d(np.cos(phi)*np.cos(delta))) # validated from book eqn 7.42 else: A = EW # Compute vortex strength GAMMA = np.linalg.solve(A,RHS) # To ensure compatibility for np.linalg.solve across numpy1.0 and numpy2.0 RHS = RHS.squeeze(axis=2) GAMMA = GAMMA.squeeze(axis=2) # --------------------------------------------------------------------------------------- # STEP 11: Compute Pressure Coefficient # ------------------ -------------------------------------------------------------------- #VORLAX subroutine = PRESS # spanwise strip exposure flag, always 0 for RCAIDE's infinitely thin airfoils. Needs to change if thick airfoils added RJTS = 0 # COMPUTE FREE-STREAM AND ONSET FLOW PARAMETERS. Used throughout the remainder of VLM B2 = np.tile((mach**2 - 1),n_cp) SINALF = np.sin(aoa) COSALF = np.cos(aoa) TANALF = np.tan(aoa) SINPSI = np.sin(PSI) COPSI = np.cos(PSI) COSIN = COSALF *SINPSI *2.0 COSINP = COSALF *SINPSI COSCOS = COSALF *COPSI PITCH = PITCHQ /VINF ROLL = ROLLQ /VINF YAW = YAWQ /VINF # reshape CHORD CHORD = CHORD[0,:] CHORD_strip = CHORD[LE_ind] # COMPUTE EFFECT OF SIDESLIP on DCP intermediate variables. needs change if cosine chorwise spacing added FORAXL = COSCOS FORLAT = COSIN TAN_LE = (XB1[LE_ind] - XA1[LE_ind])/ \ np.sqrt((ZB1[LE_ind]-ZA1[LE_ind])**2 + \ (YB1[LE_ind]-YA1[LE_ind])**2) TAN_TE = (XB_TE - XA_TE)/ np.sqrt((ZB_TE-ZA_TE)**2 + (YB_TE-YA_TE)**2) # _TE variables already have np.repeat built in TAN_LE = np.broadcast_to(np.repeat(TAN_LE,RNMAX[LE_ind]),np.shape(B2)) TAN_TE = np.broadcast_to(TAN_TE ,np.shape(B2)) TNL = TAN_LE * 1 # VORLAX's SIGN variable not needed, as these are taken directly from geometry TNT = TAN_TE * 1 XIA = np.broadcast_to((RK-1)/RNMAX, np.shape(B2)) XIB = np.broadcast_to((RK )/RNMAX, np.shape(B2)) TANA = TNL *(1. - XIA) + TNT *XIA TANB = TNL *(1. - XIB) + TNT *XIB # cumsum GANT loop if KTOP > 0 (don't actually need KTOP with vectorized arrays and np.roll) GFX = np.tile((1 /CHORD), (len_mach,1)) GANT = strip_cumsum(GFX*GAMMA, chord_breaks, RNMAX[LE_ind]) GANT = np.roll(GANT,1) GANT[:,LE_ind] = 0 GLAT = GANT *(TANA - TANB) - GFX *GAMMA *TANB COS_DL = (YBH-YAH)[LE_ind]/D cos_DL = np.broadcast_to(np.repeat(COS_DL,RNMAX[LE_ind]),np.shape(B2)) DCPSID = FORLAT * cos_DL *GLAT /(XIB - XIA) FACTOR = FORAXL + ONSET # COMPUTE LOAD COEFFICIENT GNET = GAMMA*FACTOR GNET = GNET *RNMAX /CHORD DCP = 2*GNET + DCPSID CP = DCP # --------------------------------------------------------------------------------------- # STEP 12: Compute aerodynamic coefficients # ------------------ -------------------------------------------------------------------- #VORLAX subroutine = AERO # Work panel by panel SURF = np.array(VD.wing_areas) SREF = Sref # Flip coordinates on the other side of the wing boolean = YBH<0. XA1[boolean], XB1[boolean] = XB1[boolean], XA1[boolean] YAH[boolean], YBH[boolean] = YBH[boolean], YAH[boolean] # Leading edge sweep. VORLAX does it panel by panel. This will be spanwise. TLE = TAN_LE[:,LE_ind] B2_LE = B2[:,LE_ind] T2 = TLE*TLE STB = np.zeros_like(B2_LE) STB[B2_LE<T2] = np.sqrt(T2[B2_LE<T2]-B2_LE[B2_LE<T2]) # DL IS THE DIHEDRAL ANGLE (WITH RESPECT TO THE X-Y PLANE) OF # THE IR STREAMWISE STRIP OF HORSESHOE VORTICES. COD = np.cos(phi[0,LE_ind]) # Just the LE values SID = np.sin(phi[0,LE_ind]) # Just the LE values # Now on to each strip PION = 2.0 /RNMAX ADC = 0.5*PION # XLE = LOCATION OF FIRST VORTEX MIDPOINT IN FRACTION OF CHORD. XLE = 0.125 *PION GAF = 0.5 + 0.5 *RJTS**2 # CORMED IS LENGTH OF STRIP CENTERLINE BETWEEN LOAD POINT # AND TRAILING EDGE THIS PARAMETER IS USED IN THE COMPUTATION # OF THE STRIP ROLLING COUPLE CONTRIBUTION DUE TO SIDESLIP. X = XCH #x-coord of load point (horseshoe centroid) XTE = (VD.XA_TE + VD.XB_TE)/2 #Trailing edge x-coord behind the control point CORMED = XTE - X # SINF REFERENCES THE LOAD CONTRIBUTION OF IRT-VORTEX TO THE # STRIP NOMINAL AREA, I.E., AREA OF STRIP ASSUMING CONSTANT # (CHORDWISE) HORSESHOE SPAN. SINF = ADC * DCP # The horshoe span lengths have been removed since VST/VSS == 1 always # Split into chordwise strengths and sum into strips # SICPLE = COUPLE (ABOUT STRIP CENTERLINE) DUE TO SIDESLIP. CNC = np.add.reduceat(SINF ,chord_breaks,axis=1) SICPLE = np.add.reduceat(SINF*CORMED,chord_breaks,axis=1) # COMPUTE SLOPE (TX) WITH RESPECT TO X-AXIS AT LOAD POINTS BY INTER # POLATING BETWEEN CONTROL POINTS AND TAKING INTO ACCOUNT THE LOCAL # INCIDENCE. XX = (RK - .75) *PION /2.0 TX = SLOPE - ZETA CAXL = -SINF*TX/(1.0+TX**2) # These are the axial forces on each panel BMLE = (XLE-XX)*SINF # These are moment on each panel # Sum onto the panel CAXL = np.add.reduceat(CAXL,chord_breaks,axis=1) BMLE = np.add.reduceat(BMLE,chord_breaks,axis=1) SICPLE *= (-1) * COSIN * COD * GAF DCP_LE = DCP[:,LE_ind] # COMPUTE LEADING EDGE THRUST COEFF. (CSUC) BY CALCULATING # THE TOTAL INDUCED FLOW AT THE LEADING EDGE. THIS COMPUTATION # ONLY PERFORMED FOR COSINE CHORDWISE SPACING (LAX = 0). # ** TO DO ** Add cosine spacing (earlier in VLM) to properly capture the magnitude of these earlier. # Right now, this computation still happens with linear spacing, though its effects are underestimated. CLE = compute_rotation_effects(VD, settings, EW, GAMMA, len_mach, X, CHORD, XLE, XBAR, rhs, COSINP, SINALF,COSCOS, PITCH, ROLL, YAW, STB, RNMAX) # Leading edge suction multiplier. See documentation. This is a negative integer if used # Default to 1 unless specified otherwise SPC = K_SPC*np.ones_like(DCP_LE) # If the vehicle is subsonic and there is vortex lift enabled then SPC changes to -1 VL = np.repeat(VD.vortex_lift,n_sw) m_b = np.atleast_2d(mach[:,0]<1.) SPC_cond = VL*m_b.T SPC[SPC_cond] = -1. SPC = SPC * exposed_leading_edge_flag CLE = CLE + 0.5* DCP_LE *np.sqrt(XLE[LE_ind]) CSUC = 0.5*np.pi*np.abs(SPC)*(CLE**2)*STB # TFX AND TFZ ARE THE COMPONENTS OF LEADING EDGE FORCE VECTOR ALONG # ALONG THE X AND Z BODY AXES. SLE = SLOPE[LE_ind] ZETA = ZETA[LE_ind] XCOS = np.broadcast_to(np.cos(SLE-ZETA),np.shape(DCP_LE)) XSIN = np.broadcast_to(np.sin(SLE-ZETA),np.shape(DCP_LE)) TFX = 1.*XCOS TFZ = -1.*XSIN # If a negative number is used for SPC a different correction is used. See VORLAX documentation for Lan reference TFX[SPC<0] = XSIN[SPC<0]*np.sign(DCP_LE)[SPC<0] TFZ[SPC<0] = np.abs(XCOS)[SPC<0]*np.sign(DCP_LE)[SPC<0] CAXL = CAXL - TFX*CSUC # Add a dimension into the suction to be chordwise CNC = CNC + CSUC*np.sqrt(1+T2)*TFZ # FCOS AND FSIN ARE THE COSINE AND SINE OF THE ANGLE BETWEEN # THE CHORDLINE OF THE IR-STRIP AND THE X-AXIS FCOS = np.cos(ZETA) FSIN = np.sin(ZETA) # BFX, BFY, AND BFZ ARE THE COMPONENTS ALONG THE BODY AXES # OF THE STRIP FORCE CONTRIBUTION. BFX = - CNC *FSIN + CAXL *FCOS BFY = - (CNC *FCOS + CAXL *FSIN) *SID BFZ = (CNC *FCOS + CAXL *FSIN) *COD # CONVERT CNC FROM CN INTO CNC (COEFF. *CHORD). CNC = CNC * CHORD_strip BMLE = BMLE * CHORD_strip # BMX, BMY, AND BMZ ARE THE COMPONENTS ALONG THE BODY AXES # OF THE STRIP MOMENT (ABOUT MOM. REF. POINT) CONTRIBUTION. X = VD.XCH[LE_ind] # These are all LE values Y = VD.YCH[LE_ind] # These are all LE values Z = VD.ZCH[LE_ind] # These are all LE values BMX = BFZ * Y - BFY * (Z - ZBAR) BMX = BMX + SICPLE BMY = BMLE * COD + BFX * (Z - ZBAR) - BFZ * (X - XBAR) BMZ = BMLE * SID - BFX * Y + BFY * (X - XBAR) CDC = BFZ * SINALF + (BFX *COPSI + BFY *SINPSI) * COSALF CDC = CDC * CHORD_strip ES = 2*s[0,LE_ind] STRIP = ES *CHORD_strip LIFT = (BFZ *COSALF - (BFX *COPSI + BFY *SINPSI) *SINALF)*STRIP MOMENT = STRIP * (BMY *COPSI - BMX *SINPSI) FY = (BFY *COPSI - BFX *SINPSI) *STRIP RM = STRIP *(BMX *COSALF *COPSI + BMY *COSALF *SINPSI + BMZ *SINALF) YM = STRIP *(BMZ *COSALF - (BMX *COPSI + BMY *SINPSI) *SINALF) # Now calculate the coefficients for each wing Clift_y = LIFT/CHORD_strip/ES results = compute_induced_drag(Clift_y, aoa, X, Y, Z, CHORD_strip, SURF,n_sw,SREF) CL_wing = np.add.reduceat(LIFT,span_breaks,axis=1)/SURF # Now calculate total coefficients CL = np.atleast_2d(np.sum(LIFT,axis=1)/SREF).T # CLTOT in VORLAX CX = (TANALF * CL - results.CDrag_induced)/(COSALF - SINALF*TANALF) CZ = (results.CDrag_induced+ CX*COSALF)/SINALF CM = np.atleast_2d(np.sum(MOMENT,axis=1)/SREF).T/c_bar # CMTOT in VORLAX 1. check deflection is accounted for correctly. 2. check this is right CY = np.atleast_2d(np.sum(FY,axis=1)/SREF).T # total y force coeff CRTOT = np.atleast_2d(np.sum(RM,axis=1)/SREF).T # rolling moment coeff (unscaled) CL_mom = CRTOT/b_ref*(-1) # rolling moment coeff CNTOT = np.atleast_2d(np.sum(YM,axis=1)/SREF).T # yawing moment coeff (unscaled) CN = CNTOT/b_ref*(-1) # yawing moment coeff # --------------------------------------------------------------------------------------- # STEP 13: Pack outputs # ------------------ -------------------------------------------------------------------- precision = settings.floating_point_precision #VORLAX _TOT outputs # force coefficients results.S_ref = Sref results.b_ref = b_ref results.c_ref = c_bar results.X_ref = x_m results.Y_ref = 0 results.Z_ref = z_m results.CLift = CL results.CX = CX results.CY = CY results.CZ = -CZ results.CL = CL_mom results.CM = CM results.CN = CN results.chord_sections = n_cp results.spanwise_stations = Y results.CLift_wing = CL_wing results.sectional_CLift = Clift_y results.CP = np.array(CP , dtype=precision) results.gamma = np.array(GAMMA , dtype=precision) results.VD = VD results.V_distribution = rhs.V_distribution results.V_x = rhs.Vx_ind_total results.V_z = rhs.Vz_ind_total # Dimensionalize the lift and drag for each wing i = 0 dim_wing_lifts = results.CLift_wing * VD.wing_areas dim_wing_drags = results.CDrag_induced_wing * VD.wing_areas Clift_wings = Data() Cdrag_wings = Data() # Assign the lift and drag and non-dimensionalize for wing in geometry.wings.values(): ref = wing.areas.reference if wing.symmetric: Clift_wings[wing.tag] = np.atleast_2d(np.sum(dim_wing_lifts[:,i:(i+2)],axis=1)).T/ref Cdrag_wings[wing.tag] = np.atleast_2d(np.sum(dim_wing_drags[:,i:(i+2)],axis=1)).T/ref i+=1 else: Clift_wings[wing.tag] = np.atleast_2d(dim_wing_lifts[:,i]).T/ref Cdrag_wings[wing.tag] = np.atleast_2d(dim_wing_drags[:,i]).T/ref i+=1 results.CLift_wings = Clift_wings results.CDrag_induced_wings = Cdrag_wings return results
# ---------------------------------------------------------------------- # CLE rotation effects helper function # ----------------------------------------------------------------------
[docs] def compute_rotation_effects(VD, settings, EW_small, GAMMA, len_mach, X, CHORD, XLE, XBAR, rhs, COSINP, SINALF,COSCOS, PITCH, ROLL, YAW, STB, RNMAX): """ This computes the effects of the freestream and aircraft rotation rate on CLE, the induced flow at the leading edge Assumptions: Several of the values needed in this calculation have been computed earlier and stored in VD Normally, VORLAX skips the calculation implemented in this function for linear chordwise spacing (the if statement below). However, since the trends are correct, albeit underestimated, this calculation is being forced here. """ LE_ind = VD.leading_edge_indices RNMAX = VD.panels_per_strip ##spacing = settings.spanwise_cosine_spacing ##if spacing == False: # linear spacing is LAX==1 in VORLAX ## return 0 #CLE not calculated till later for linear spacing # Computate rotational effects (pitch, roll, yaw rates) on LE suction # pick leading edge strip values for EW and reshape GAMMA -> gamma accordingly EW = EW_small[: ,LE_ind, :] n_tot_strips = EW.shape[1] gamma = np.array(np.split(np.repeat(GAMMA, n_tot_strips, axis=0), len_mach)) CLE = (EW*gamma).sum(axis=2) # Up till EFFINC, some of the following values were computed in compute_RHS_matrix(). # EFFINC and ALOC are calculated the exact same way, except for the XGIRO term. # LOCATE VORTEX LATTICE CONTROL POINT WITH RESPECT TO THE # ROTATION CENTER (XBAR, 0, ZBAR). THE RELATIVE COORDINATES # ARE XGIRO, YGIRO, AND ZGIRO. XGIRO = X - CHORD*XLE - np.repeat(XBAR, RNMAX[LE_ind]) YGIRO = rhs.YGIRO ZGIRO = rhs.ZGIRO # VX, VY, VZ ARE THE FLOW ONSET VELOCITY COMPONENTS AT THE LEADING # EDGE (STRIP MIDPOINT). VX, VY, VZ AND THE ROTATION RATES ARE # REFERENCED TO THE FREE STREAM VELOCITY. VX = (COSCOS - PITCH*ZGIRO + YAW *YGIRO) VY = (COSINP - YAW *XGIRO + ROLL *ZGIRO) VZ = (SINALF - ROLL *YGIRO + PITCH*XGIRO) # CCNTL, SCNTL, SID, and COD were computed in compute_RHS_matrix() # EFFINC = COMPONENT OF ONSET FLOW ALONG NORMAL TO CAMBERLINE AT # LEADING EDGE. EFFINC = VX *rhs.SCNTL + VY *rhs.CCNTL *rhs.SID - VZ *rhs.CCNTL *rhs.COD CLE = CLE - EFFINC[:,LE_ind] CLE = np.where(STB > 0, CLE /RNMAX[LE_ind] /STB, CLE) return CLE
# ---------------------------------------------------------------------- # Vectorized cumsum from indices # ----------------------------------------------------------------------
[docs] def strip_cumsum(arr, chord_breaks, strip_lengths): """ Uses numpy to to compute a cumsum that resets along the leading edge of every strip. Assumptions: chordwise_breaks always starts at 0 """ cumsum = np.cumsum(arr, axis=1) offsets = cumsum[:,chord_breaks-1] offsets[:,0] = 0 offsets = np.repeat(offsets, strip_lengths, axis=1) return cumsum - offsets
[docs] def compute_induced_drag(cl, alpha, x_dist, y_dist, z_dist, chord_dist, SURF, n_sw,SREF, v_inf=1): n_cases = len(alpha) n_wings = len(n_sw) rho = 1 # Initialize results storage CDi_total = np.zeros(n_cases) CDi_wing = np.zeros((n_cases, n_wings)) D_induced = np.zeros((n_cases, n_wings)) Cd_i_distribution = np.zeros_like(cl) alpha_i = np.zeros_like(cl) # Calculate circulation for this case circulation_dist = 0.5 * chord_dist * v_inf * cl wing_span_index = 0 # Induced velocity calculation for this case for wing_index,wing_segments in enumerate(n_sw): wing_span_index_previous = wing_span_index wing_span_index += wing_segments circulation_segments = circulation_dist[:,wing_span_index_previous:wing_span_index] cl_segments = cl[:, wing_span_index_previous:wing_span_index] # Control points y_control_points = np.tile(y_dist[wing_span_index_previous:wing_span_index][None,:],(n_cases,1)) z_control_points = np.tile(z_dist[wing_span_index_previous:wing_span_index][None,:],(n_cases,1)) x_control_points = np.tile(x_dist[wing_span_index_previous:wing_span_index][None,:],(n_cases,1)) # Centerpoints y_centerpoints = (y_control_points[:,:-1] + y_control_points[:,1:]) / 2 z_centerpoints = (z_control_points[:,:-1] + z_control_points[:,1:]) / 2 x_centerpoints = (x_control_points[:,:-1] + x_control_points[:,1:]) / 2 # Shed vortex segments for this case differences = np.diff(y_control_points,axis=1) direction = np.sign(differences) * np.ones_like(y_centerpoints) shed_vortex_segments = direction * np.diff(circulation_segments, axis=1) # Trefftz Plane Y-Z location: TP_y_centerpoints = y_centerpoints TP_z_centerpoints = np.cos(alpha) * z_centerpoints - np.sin(alpha) * x_centerpoints TP_y_control_points = y_control_points TP_z_control_points = np.cos(alpha) * z_control_points - np.sin(alpha) * x_control_points V_induced = np.zeros_like(y_control_points) for j in range(len(y_control_points[0])): # Loop through each control point # Distance from segment to control point A = ( np.tile(TP_y_control_points[:,j][:, None],(1,len(TP_y_centerpoints[0]) )) - TP_y_centerpoints)**2 B = ( np.tile(TP_z_control_points[:,j][:, None],(1,len(TP_z_centerpoints[0]))) - TP_z_centerpoints)**2 r = (A + B) ** (0.5) # Calculate normal vector to the wake trace if len(TP_y_control_points[0]) < 2 or len(TP_z_control_points[0]) < 2 : slope = np.zeros((n_cases,1)) V_induced[:,j] = 0 else: slope = np.gradient(TP_z_control_points, TP_y_control_points[0],axis=1) # Normal vector to the wake trace n_hat = np.zeros((n_cases,2 )) n_hat[:,0] = np.cos(np.arctan2(-1, slope[:,j])) n_hat[:,1] = np.sin(np.arctan2(-1, slope[:,j])) # Calculate induced velocity vector v_hat = np.zeros((n_cases ,2, len(TP_z_centerpoints[0]) )) v_hat[:,0,:] = -1*( np.tile(TP_z_control_points[:,j][:, None],(1,len(TP_z_centerpoints[0]))) - TP_z_centerpoints)/r v_hat[:,1,:] = ( np.tile(TP_y_control_points[:,j][:, None],(1,len(TP_y_centerpoints[0]) )) - TP_y_centerpoints)/r v = v_hat * np.tile(shed_vortex_segments[:,None,:],(1, 2,1)) / (2*np.pi*np.tile(r[:,None, :],(1, 2, 1))) # Downwash. Dot product of normal vector and induced velocity vector. V_induced[:,j] = np.sum( np.tile(n_hat[:,0][:, None], (1,len(TP_z_centerpoints[0]) )) *v[:,0,:] + np.tile(n_hat[:,1][:, None], (1,len(TP_z_centerpoints[0]) ))*v[:,1,:], axis=1) drag_sum = np.sqrt(np.square(y_control_points[:, 0]) + np.square(z_control_points[:, 0])) s_wake = np.atleast_2d(deepcopy(drag_sum)).T for j in range(1,len(y_control_points[0])): drag_sum += np.sqrt(np.square(y_control_points[:,j] - y_control_points[:,j-1]) + np.square(z_control_points[:,j] - z_control_points[:,j-1])) s_wake = np.hstack((s_wake, np.atleast_2d(drag_sum).T)) D_induced[:,wing_index] = -0.5 * rho * trapezoid(V_induced * circulation_segments, s_wake, axis=1) # Per-wing CDi (using wing's reference area) CDi_wing[:,wing_index] = D_induced[:,wing_index] / (0.5 * rho * v_inf**2 * SURF[wing_index]) # Store results for this case alpha_i_case = np.arctan(V_induced/ v_inf) Cd_i_distribution[:,wing_span_index_previous:wing_span_index] = cl_segments * np.sin(-alpha_i_case) alpha_i[:,wing_span_index_previous:wing_span_index] = alpha_i_case CDi_total = np.sum(D_induced, axis=1) / (0.5 * rho * v_inf**2 * SREF) # Package results results = Data() results.CDrag_induced = CDi_total[:, np.newaxis] results.sectional_CDrag_induced = Cd_i_distribution results.CDrag_induced_wing = CDi_wing results.alpha_induced = alpha_i return results