# RCAIDE/Library/Methods/Powertrain/Converters/DC_Motor/design_optimal_motor.py
# (c) Copyright 2023 Aerospace Research Community LLC
#
# Created: Jul 2024, RCAIDE Team
# ----------------------------------------------------------------------------------------------------------------------
# IMPORT
# ----------------------------------------------------------------------------------------------------------------------
import RCAIDE
# python imports
from scipy.optimize import minimize
# ----------------------------------------------------------------------------------------------------------------------
# design motor
# ----------------------------------------------------------------------------------------------------------------------
[docs]
def design_optimal_motor(motor):
"""
Sizes a DC motor to obtain the best combination of speed constant and resistance values
by sizing the motor for a design RPM value.
Parameters
----------
motor : RCAIDE.Library.Components.Powertrain.Converters.DC_Motor
Motor component with the following attributes:
- no_load_current : float
No-load current [A]
- nominal_voltage : float
Nominal voltage [V]
- design_angular_velocity : float
Angular velocity [radians/s]
- efficiency : float
Efficiency [unitless]
- design_torque : float
Design torque [N·m]
- gearbox : Data
Gearbox component
- gear_ratio : float
Gear ratio [unitless]
Returns
-------
motor : RCAIDE.Library.Components.Powertrain.Converters.DC_Motor
Motor with updated attributes:
- speed_constant : float
Speed constant [unitless]
- resistance : float
Resistance [ohms]
- design_current : float
Design current [A]
Notes
-----
This function uses numerical optimization to find the optimal values of speed constant
and resistance that satisfy the motor's design requirements. It attempts to solve
the optimization problem with hard constraints first, and if that fails, it uses slack
constraints.
The optimization process follows these steps:
1. Extract motor design parameters (voltage, angular velocity, efficiency, torque)
2. Define optimization bounds for speed constant and resistance
3. Set up hard constraints for efficiency and torque
4. Attempt optimization with hard constraints
5. If optimization fails, retry with slack constraints
6. Update the motor with the optimized parameters
The objective function minimizes the current draw for a given voltage, angular velocity,
and torque requirement.
**Major Assumptions**
* The motor follows a DC motor model
* The optimization bounds are appropriate for the motor size
* If hard constraints cannot be satisfied, slack constraints are acceptable
**Theory**
The motor model uses the following relationships:
- Current: :math:`I = (V - \\omega/Kv)/R`
- Torque: :math:`T = (I - I₀)/Kv`
- Efficiency: :math:`\\eta = (1 - (I₀\\cdot R)/(V - \\omega/Kv))\\cdot(\\omega/(V\\cdot Kv))`
where:
- V is the nominal voltage
- ω is the angular velocity
- Kv is the speed constant
- R is the resistance
- I₀ is the no-load current
- T is the torque
- η is the efficiency
See Also
--------
RCAIDE.Library.Methods.Powertrain.Converters.Motor.compute_motor_performance
"""
if type(motor) != RCAIDE.Library.Components.Powertrain.Converters.DC_Motor:
raise Exception('function only supports low-fidelity (DC) motor')
# design properties of the motor
io = motor.no_load_current
v = motor.nominal_voltage
G = motor.gearbox.gear_ratio
omega = motor.design_angular_velocity
etam = motor.efficiency
Q = motor.design_torque
# define optimizer bounds
KV_lower_bound = 0.01
KV_upper_bound = 100
Res_lower_bound = 0.001
Res_upper_bound = 10
args = (v , omega, etam , Q , io,G )
hard_cons = [{'type':'eq', 'fun': hard_constraint_1,'args': args},{'type':'eq', 'fun': hard_constraint_2,'args': args}]
slack_cons = [{'type':'eq', 'fun': slack_constraint_1,'args': args},{'type':'eq', 'fun': slack_constraint_2,'args': args}]
bnds = ((KV_lower_bound, KV_upper_bound), (Res_lower_bound , Res_upper_bound))
# try hard constraints to find optimum motor parameters
sol = minimize(objective, [0.5, 0.1], args=(v , omega, etam , Q , io,G) , method='SLSQP', bounds=bnds, tol=1e-6, constraints=hard_cons)
if sol.success == False:
# use slack constraints if optimizer fails and motor parameters cannot be found
print('\n Optimum motor design failed. Using slack constraints')
sol = minimize(objective, [0.5, 0.1], args=(v , omega, etam , Q , io,G) , method='SLSQP', bounds=bnds, tol=1e-6, constraints=slack_cons)
if sol.success == False:
assert('\n Slack contraints failed')
motor.speed_constant = sol.x[0]
motor.resistance = sol.x[1]
internal_omega = omega * G
motor.design_current = (v-(internal_omega)/motor.speed_constant)/motor.resistance
return motor
# objective function
[docs]
def objective(x, v , omega, etam , Q , io,G ):
internal_omega = omega * G
return (v - internal_omega/x[0])/x[1]
# hard efficiency constraint
[docs]
def hard_constraint_1(x, v , omega, etam , Q , io,G ):
internal_omega = omega * G
return etam - (1- (io*x[1])/(v - internal_omega/x[0]))*(internal_omega/(v*x[0]))
# hard torque equality constraint
[docs]
def hard_constraint_2(x, v , omega, etam , Q , io,G ):
internal_omega = omega * G
return ((v - internal_omega/x[0])/x[1] - io)/x[0] - Q
# slack efficiency constraint
[docs]
def slack_constraint_1(x, v , omega, etam , Q , io,G ):
internal_omega = omega * G
return abs(etam - (1- (io*x[1])/(v - internal_omega/x[0]))*(internal_omega/(v*x[0]))) - 0.2
# slack torque equality constraint
[docs]
def slack_constraint_2(x, v , omega, etam , Q , io,G ):
internal_omega = omega * G
return abs(((v - internal_omega/x[0])/x[1] - io)/x[0] - Q) - 200