Source code for RCAIDE.Library.Methods.Powertrain.Converters.Motor.design_optimal_motor

# RCAIDE/Library/Methods/Powertrain/Converters/DC_Motor/design_optimal_motor.py
# (c) Copyright 2023 Aerospace Research Community LLC
# 
# Created:  Jul 2024, RCAIDE Team 

# ----------------------------------------------------------------------------------------------------------------------
#  IMPORT
# ----------------------------------------------------------------------------------------------------------------------
import RCAIDE

# python imports  
from scipy.optimize import minimize 

# ----------------------------------------------------------------------------------------------------------------------
#  design motor 
# ----------------------------------------------------------------------------------------------------------------------     
[docs] def design_optimal_motor(motor): """ Sizes a DC motor to obtain the best combination of speed constant and resistance values by sizing the motor for a design RPM value. Parameters ---------- motor : RCAIDE.Library.Components.Powertrain.Converters.DC_Motor Motor component with the following attributes: - no_load_current : float No-load current [A] - nominal_voltage : float Nominal voltage [V] - design_angular_velocity : float Angular velocity [radians/s] - efficiency : float Efficiency [unitless] - design_torque : float Design torque [N·m] - gearbox : Data Gearbox component - gear_ratio : float Gear ratio [unitless] Returns ------- motor : RCAIDE.Library.Components.Powertrain.Converters.DC_Motor Motor with updated attributes: - speed_constant : float Speed constant [unitless] - resistance : float Resistance [ohms] - design_current : float Design current [A] Notes ----- This function uses numerical optimization to find the optimal values of speed constant and resistance that satisfy the motor's design requirements. It attempts to solve the optimization problem with hard constraints first, and if that fails, it uses slack constraints. The optimization process follows these steps: 1. Extract motor design parameters (voltage, angular velocity, efficiency, torque) 2. Define optimization bounds for speed constant and resistance 3. Set up hard constraints for efficiency and torque 4. Attempt optimization with hard constraints 5. If optimization fails, retry with slack constraints 6. Update the motor with the optimized parameters The objective function minimizes the current draw for a given voltage, angular velocity, and torque requirement. **Major Assumptions** * The motor follows a DC motor model * The optimization bounds are appropriate for the motor size * If hard constraints cannot be satisfied, slack constraints are acceptable **Theory** The motor model uses the following relationships: - Current: :math:`I = (V - \\omega/Kv)/R` - Torque: :math:`T = (I - I₀)/Kv` - Efficiency: :math:`\\eta = (1 - (I₀\\cdot R)/(V - \\omega/Kv))\\cdot(\\omega/(V\\cdot Kv))` where: - V is the nominal voltage - ω is the angular velocity - Kv is the speed constant - R is the resistance - I₀ is the no-load current - T is the torque - η is the efficiency See Also -------- RCAIDE.Library.Methods.Powertrain.Converters.Motor.compute_motor_performance """ if type(motor) != RCAIDE.Library.Components.Powertrain.Converters.DC_Motor: raise Exception('function only supports low-fidelity (DC) motor') # design properties of the motor io = motor.no_load_current v = motor.nominal_voltage G = motor.gearbox.gear_ratio omega = motor.design_angular_velocity etam = motor.efficiency Q = motor.design_torque # define optimizer bounds KV_lower_bound = 0.01 KV_upper_bound = 100 Res_lower_bound = 0.001 Res_upper_bound = 10 args = (v , omega, etam , Q , io,G ) hard_cons = [{'type':'eq', 'fun': hard_constraint_1,'args': args},{'type':'eq', 'fun': hard_constraint_2,'args': args}] slack_cons = [{'type':'eq', 'fun': slack_constraint_1,'args': args},{'type':'eq', 'fun': slack_constraint_2,'args': args}] bnds = ((KV_lower_bound, KV_upper_bound), (Res_lower_bound , Res_upper_bound)) # try hard constraints to find optimum motor parameters sol = minimize(objective, [0.5, 0.1], args=(v , omega, etam , Q , io,G) , method='SLSQP', bounds=bnds, tol=1e-6, constraints=hard_cons) if sol.success == False: # use slack constraints if optimizer fails and motor parameters cannot be found print('\n Optimum motor design failed. Using slack constraints') sol = minimize(objective, [0.5, 0.1], args=(v , omega, etam , Q , io,G) , method='SLSQP', bounds=bnds, tol=1e-6, constraints=slack_cons) if sol.success == False: assert('\n Slack contraints failed') motor.speed_constant = sol.x[0] motor.resistance = sol.x[1] internal_omega = omega * G motor.design_current = (v-(internal_omega)/motor.speed_constant)/motor.resistance return motor
# objective function
[docs] def objective(x, v , omega, etam , Q , io,G ): internal_omega = omega * G return (v - internal_omega/x[0])/x[1]
# hard efficiency constraint
[docs] def hard_constraint_1(x, v , omega, etam , Q , io,G ): internal_omega = omega * G return etam - (1- (io*x[1])/(v - internal_omega/x[0]))*(internal_omega/(v*x[0]))
# hard torque equality constraint
[docs] def hard_constraint_2(x, v , omega, etam , Q , io,G ): internal_omega = omega * G return ((v - internal_omega/x[0])/x[1] - io)/x[0] - Q
# slack efficiency constraint
[docs] def slack_constraint_1(x, v , omega, etam , Q , io,G ): internal_omega = omega * G return abs(etam - (1- (io*x[1])/(v - internal_omega/x[0]))*(internal_omega/(v*x[0]))) - 0.2
# slack torque equality constraint
[docs] def slack_constraint_2(x, v , omega, etam , Q , io,G ): internal_omega = omega * G return abs(((v - internal_omega/x[0])/x[1] - io)/x[0] - Q) - 200