Source code for RCAIDE.Library.Mission.Segments.Cruise.Constant_Dynamic_Pressure_Constant_Altitude

# RCAIDE/Library/Missions/Segments/Cruise/Constant_Dynamic_Pressure_Constant_Altitude.py
# 
# 
# Created:  Jul 2023, M. Clarke

# ----------------------------------------------------------------------------------------------------------------------
#  IMPORT
# ----------------------------------------------------------------------------------------------------------------------
# RCAIDE 
import RCAIDE 

# Package imports 
import numpy as np
 
# ----------------------------------------------------------------------------------------------------------------------
#  Initialize Conditions
# ----------------------------------------------------------------------------------------------------------------------
[docs] def initialize_conditions(segment): """ Initializes conditions for constant dynamic pressure cruise at fixed altitude Parameters ---------- segment : Segment The mission segment being analyzed - altitude : float Cruise altitude [m]. If not specified, the altitude from the previous segment is used. - distance : float Ground distance to cover [m] - dynamic_pressure : float Dynamic pressure to maintain [Pa] - sideslip_angle : float Aircraft sideslip angle [rad] - state: numerics.dimensionless.control_points : array Discretization points [-] conditions : Data State conditions container - analyses: atmosphere : Model Atmospheric model for property calculations Returns ------- None Updates segment conditions directly: - conditions.frames.inertial.velocity_vector [m/s] - conditions.frames.inertial.position_vector [m] - conditions.freestream.altitude [m] - conditions.frames.inertial.time [s] Notes ----- This function sets up the initial conditions for a cruise segment with constant dynamic pressure and constant altitude. The airspeed is determined from the dynamic pressure constraint. **Calculation Process** 1. Get atmospheric properties at altitude 2. Calculate true airspeed from dynamic pressure: V = sqrt(2q/ρ) where: - q is dynamic pressure - ρ is air density 3. Calculate time required based on distance and speed 4. Discretize time points 5. Decompose velocity into components using sideslip angle **Major Assumptions** * Constant dynamic pressure * Constant altitude * Standard atmosphere model * Small angle approximations * Quasi-steady flight * No wind effects See Also -------- RCAIDE.Framework.Mission.Segments RCAIDE.Library.Mission.Common.Update.atmosphere """ # unpack alt = segment.altitude xf = segment.distance q = segment.dynamic_pressure beta = segment.sideslip_angle conditions = segment.state.conditions # Update freestream to get density RCAIDE.Library.Mission.Common.Update.atmosphere(segment) rho = conditions.freestream.density[:,0] # check for initial altitude if alt is None: if not segment.state.initials: raise AttributeError('altitude not set') alt = -1.0 * segment.state.initials.conditions.frames.inertial.position_vector[-1,2] # check for initial velocity if q is None: if not segment.state.initials: raise AttributeError('dynamic pressure not set') air_speed = np.linalg.norm(segment.state.initials.conditions.frames.inertial.velocity_vector[-1]) else: # compute speed, constant with constant altitude air_speed = np.sqrt(q/(rho*0.5)) # dimensionalize time t_initial = conditions.frames.inertial.time[0,0] t_final = xf / air_speed + t_initial t_nondim = segment.state.numerics.dimensionless.control_points time = t_nondim * (t_final-t_initial) + t_initial v_x = np.cos(beta)*air_speed v_y = np.sin(beta)*air_speed # pack segment.state.conditions.freestream.altitude[:,0] = alt segment.state.conditions.frames.inertial.position_vector[:,2] = -alt # z points down segment.state.conditions.frames.inertial.velocity_vector[:,0] = v_x segment.state.conditions.frames.inertial.velocity_vector[:,1] = v_y segment.state.conditions.frames.inertial.time[:,0] = time[:,0]