Source code for RCAIDE.Library.Plots.Aerodynamics.plot_aerodynamic_coefficients

# RCAIDE/Library/Plots/Performance/Aerodynamics/plot_aerodynamic_coefficients.py
# 
# 
# Created:  Jul 2023, M. Clarke

# ----------------------------------------------------------------------------------------------------------------------
#  IMPORT
# ----------------------------------------------------------------------------------------------------------------------  
from RCAIDE.Framework.Core import Units
from RCAIDE.Library.Plots.Common import set_axes, plot_style
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np  

# ----------------------------------------------------------------------------------------------------------------------
#  PLOTS
# ----------------------------------------------------------------------------------------------------------------------   
[docs] def plot_aerodynamic_coefficients(results, save_figure = False, show_legend = True, save_filename = "Aerodynamic_Coefficients", file_type = ".png", width = 11, height = 7): """ Creates a multi-panel visualization of aerodynamic coefficients throughout flight. Parameters ---------- results : Results RCAIDE results data structure containing: - segments[i].conditions.aerodynamics.coefficients Coefficient data containing: - lift.total[:,0,None] Total lift coefficient - drag.total[:,0,None] Total drag coefficient - segments[i].conditions.aerodynamics.angles Angle data containing: - alpha[:,0] Angle of attack in radians - segments[i].conditions.frames.inertial.time[:,0] Time history for each segment - segments[i].tag Segment identifier string save_figure : bool, optional Flag for saving the figure (default: False) show_legend : bool, optional Flag to display segment legend (default: True) save_filename : str, optional Name of file for saved figure (default: "Aerodynamic_Coefficients") file_type : str, optional File extension for saved figure (default: ".png") width : float, optional Figure width in inches (default: 11) height : float, optional Figure height in inches (default: 7) Returns ------- fig : matplotlib.figure.Figure Notes ----- Creates visualization showing: - Aerodynamic performance metrics - Flight attitude history - Efficiency characteristics - Time evolution of coefficients **Major Assumptions** * Quasi-steady aerodynamics * Small angle approximations * Incompressible flow * Linear lift curve slope * Negligible sideslip **Definitions** 'Lift Coefficient' Non-dimensional lift force 'Drag Coefficient' Non-dimensional drag force 'Angle of Attack' Angle between airflow and reference line 'L/D Ratio' Measure of aerodynamic efficiency See Also -------- RCAIDE.Library.Plots.Aerodynamics.plot_aerodynamic_forces : Dimensional force plots RCAIDE.Library.Plots.Aerodynamics.plot_drag_components : Drag breakdown analysis """ # get plotting style ps = plot_style() parameters = {'axes.labelsize': ps.axis_font_size, 'xtick.labelsize': ps.axis_font_size, 'ytick.labelsize': ps.axis_font_size, 'axes.titlesize': ps.title_font_size} plt.rcParams.update(parameters) # get line colors for plots line_colors = cm.inferno(np.linspace(0,0.9,len(results.segments))) fig = plt.figure(save_filename) fig.set_size_inches(width,height) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min cl = results.segments[i].conditions.aerodynamics.coefficients.lift.total[:,0,None] cd = results.segments[i].conditions.aerodynamics.coefficients.drag.total[:,0,None] aoa = results.segments[i].conditions.aerodynamics.angles.alpha[:,0] / Units.deg l_d = cl/cd segment_tag = results.segments[i].tag segment_name = segment_tag.replace('_', ' ') axis_1 = plt.subplot(2,2,1) axis_1.plot(time, aoa, color = line_colors[i], marker = ps.markers[0],markersize = ps.marker_size, linewidth = ps.line_width, label = segment_name) axis_1.set_ylabel(r'AoA (deg)') axis_1.set_xlabel('Time (mins)') axis_1.set_ylim([-5,15]) set_axes(axis_1) axis_2 = plt.subplot(2,2,2) axis_2.plot(time, l_d, color = line_colors[i], marker = ps.markers[0],markersize = ps.marker_size, linewidth = ps.line_width) axis_2.set_ylabel(r'L/D') axis_2.set_xlabel('Time (mins)') set_axes(axis_2) axis_3 = plt.subplot(2,2,3) axis_3.plot(time, cl, color = line_colors[i], marker = ps.markers[0],markersize = ps.marker_size, linewidth = ps.line_width) axis_3.set_xlabel('Time (mins)') axis_3.set_ylabel(r'$C_L$') set_axes(axis_3) axis_4 = plt.subplot(2,2,4) axis_4.plot(time, cd, color = line_colors[i], marker = ps.markers[0],markersize = ps.marker_size, linewidth = ps.line_width) axis_4.set_xlabel('Time (mins)') axis_4.set_ylabel(r'$C_D$') axis_4.set_ylim([0,0.1]) set_axes(axis_4) if show_legend: leg = fig.legend(bbox_to_anchor=(0.5, 0.95), loc='upper center', ncol = 4) # Adjusting the sub-plots for legend fig.tight_layout() fig.subplots_adjust(top=0.8) if save_figure: fig.savefig(save_filename + file_type) return fig