RCAIDE.Library.Attributes.Gases.Air
Air#
- class Air(*args, **kwarg)[source]#
Bases:
Gas
A class representing air and its thermodynamic properties. Provides methods for computing various gas properties including density, speed of sound, specific heat, and transport properties.
- tag#
Identifier for the gas type (‘air’)
- Type:
str
- molecular_mass#
Molecular mass of air in kg/kmol
- Type:
float
- gas_specific_constant#
Specific gas constant in m²/s²-K
- Type:
float
- specific_heat_capacity#
Specific heat capacity in J/kg·K
- Type:
float
- composition#
- Chemical composition of air
- O2float
Mass fraction of oxygen (0.20946)
- Arfloat
Mass fraction of argon (0.00934)
- CO2float
Mass fraction of carbon dioxide (0.00036)
- N2float
Mass fraction of nitrogen (0.78084)
- otherfloat
Mass fraction of other components (0.00)
- Type:
Notes
This class implements standard atmospheric air properties and various methods for computing thermodynamic and transport properties.
- compute_density(T=300.0, p=101325.0)[source]#
Computes air density using the ideal gas law.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
- Returns:
rho – Density in kg/m³
- Return type:
float
Notes
- Major Assumptions
Air behaves as an ideal gas
- compute_speed_of_sound(T=300.0, p=101325.0, variable_gamma=False)[source]#
Computes speed of sound in air.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
variable_gamma (bool) – If True, uses temperature-dependent specific heat ratio
- Returns:
a – Speed of sound in m/s
- Return type:
float
Notes
- Major Assumptions
If variable_gamma is False, assumes γ = 1.4
Air behaves as an ideal gas
- compute_cp(T=300.0, p=101325.0)[source]#
Computes specific heat capacity at constant pressure using a 3rd-order polynomial fit.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
- Returns:
cp – Specific heat capacity in J/(kg·K)
- Return type:
float
Notes
- Major Assumptions
Valid for temperature range: 123 K < T < 673 K
Theory .. math:
c_p(T) = c_1T^3 + c_2T^2 + c_3T + c_4
References
[1] Ekin, J. (2006). Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing. Oxford University Press.
- compute_gamma(T=300.0, p=101325.0)[source]#
Computes specific heat ratio using a 3rd-order polynomial fit.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
- Returns:
g – Specific heat ratio (gamma) [unitless]
- Return type:
float
Notes
Major Assumptions * Valid for temperature range: 233 K < T < 1273 K
- compute_absolute_viscosity(T=300.0, p=101325.0)[source]#
Computes absolute (dynamic) viscosity using Sutherland’s law.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
- Returns:
mu – Absolute viscosity in kg/(m·s)
- Return type:
float
Notes
Theory Uses Sutherland’s formula with S = 110.4K and C1 = 1.458e-6 kg/m-s-sqrt(K)
References
[1] Sutherland’s law
- compute_thermal_conductivity(T=300.0, p=101325.0)[source]#
Computes thermal conductivity of air.
- Parameters:
T (float) – Temperature in Kelvin
p (float) – Pressure in Pascal
- Returns:
k – Thermal conductivity in W/(m·K)
- Return type:
float
Notes
- Major Assumptions
Properties computed at 1 bar (14.5 psia)
References
[1] The Engineering ToolBox (2009). Air - Thermal Conductivity vs. Temperature and Pressure. [online] Available at: https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html [Accessed 8 January 2025].