RCAIDE.Library.Attributes.Gases.Air

Air#

class Air(*args, **kwarg)[source]#

Bases: Gas

A class representing air and its thermodynamic properties. Provides methods for computing various gas properties including density, speed of sound, specific heat, and transport properties.

tag#

Identifier for the gas type (‘air’)

Type:

str

molecular_mass#

Molecular mass of air in kg/kmol

Type:

float

gas_specific_constant#

Specific gas constant in m²/s²-K

Type:

float

specific_heat_capacity#

Specific heat capacity in J/kg·K

Type:

float

composition#
Chemical composition of air
  • O2float

    Mass fraction of oxygen (0.20946)

  • Arfloat

    Mass fraction of argon (0.00934)

  • CO2float

    Mass fraction of carbon dioxide (0.00036)

  • N2float

    Mass fraction of nitrogen (0.78084)

  • otherfloat

    Mass fraction of other components (0.00)

Type:

Data

Notes

This class implements standard atmospheric air properties and various methods for computing thermodynamic and transport properties.

compute_density(T=300.0, p=101325.0)[source]#

Computes air density using the ideal gas law.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

rho – Density in kg/m³

Return type:

float

Notes

Major Assumptions
  • Air behaves as an ideal gas

compute_speed_of_sound(T=300.0, p=101325.0, variable_gamma=False)[source]#

Computes speed of sound in air.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

  • variable_gamma (bool) – If True, uses temperature-dependent specific heat ratio

Returns:

a – Speed of sound in m/s

Return type:

float

Notes

Major Assumptions
  • If variable_gamma is False, assumes γ = 1.4

  • Air behaves as an ideal gas

compute_cp(T=300.0, p=101325.0)[source]#

Computes specific heat capacity at constant pressure using a 3rd-order polynomial fit.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

cp – Specific heat capacity in J/(kg·K)

Return type:

float

Notes

Major Assumptions
  • Valid for temperature range: 123 K < T < 673 K

Theory .. math:

c_p(T) = c_1T^3 + c_2T^2 + c_3T + c_4

References

[1] Ekin, J. (2006). Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing. Oxford University Press.

compute_gamma(T=300.0, p=101325.0)[source]#

Computes specific heat ratio using a 3rd-order polynomial fit.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

g – Specific heat ratio (gamma) [unitless]

Return type:

float

Notes

Major Assumptions * Valid for temperature range: 233 K < T < 1273 K

compute_absolute_viscosity(T=300.0, p=101325.0)[source]#

Computes absolute (dynamic) viscosity using Sutherland’s law.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

mu – Absolute viscosity in kg/(m·s)

Return type:

float

Notes

Theory Uses Sutherland’s formula with S = 110.4K and C1 = 1.458e-6 kg/m-s-sqrt(K)

References

[1] Sutherland’s law

compute_thermal_conductivity(T=300.0, p=101325.0)[source]#

Computes thermal conductivity of air.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

k – Thermal conductivity in W/(m·K)

Return type:

float

Notes

Major Assumptions
  • Properties computed at 1 bar (14.5 psia)

References

[1] The Engineering ToolBox (2009). Air - Thermal Conductivity vs. Temperature and Pressure. [online] Available at: https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html [Accessed 8 January 2025].

compute_prandtl_number(T=300.0)[source]#

Computes Prandtl number.

Parameters:

T (float) – Temperature in Kelvin

Returns:

Pr – Prandtl number [unitless]

Return type:

float

Notes

Theory .. math:

Pr = \frac{\mu C_p}{k}
compute_R(T=300.0, p=101325.0)[source]#

Computes specific gas constant.

Parameters:
  • T (float) – Temperature in Kelvin

  • p (float) – Pressure in Pascal

Returns:

R – Specific gas constant in J/(kg·K)

Return type:

float

Notes

Theory .. math:

R = \frac{\gamma - 1}{\gamma}c_p