RCAIDE.Library.Methods.Geodesics.Geodesics.Geodesic#

class Geodesic(a, f)[source]#

Bases: object

Solve geodesic problems

__init__(a, f)[source]#

Construct a Geodesic object

Parameters:
  • a – the equatorial radius of the ellipsoid in meters

  • f – the flattening of the ellipsoid

An exception is thrown if a or the polar semi-axis b = a (1 - f) is not a finite positive quantity.

Methods

Inverse(lat1, lon1, lat2, lon2[, outmask])

Solve the inverse geodesic problem

__init__(a, f)

Construct a Geodesic object

Attributes

ALL

All of the above.

AREA

Calculate area S12.

AZIMUTH

Calculate azimuths azi1 and azi2.

CAP_ALL

CAP_C1

CAP_C1p

CAP_C2

CAP_C3

CAP_C4

CAP_MASK

CAP_NONE

DISTANCE

Calculate distance s12.

DISTANCE_IN

Allow distance s12 to be used as input in the direct geodesic problem.

EMPTY

No capabilities, no output.

GEODESICSCALE

Calculate geodesic scales M12 and M21.

GEOGRAPHICLIB_GEODESIC_ORDER

LATITUDE

Calculate latitude lat2.

LONGITUDE

Calculate longitude lon2.

LONG_UNROLL

Unroll longitudes, rather than reducing them to the range [-180d,180d].

OUT_ALL

OUT_MASK

REDUCEDLENGTH

Calculate reduced length m12.

STANDARD

All of the above.

WGS84

maxit1_

maxit2_

nA1_

nA2_

nA3_

nA3x_

nC1_

nC1p_

nC2_

nC3_

nC3x_

nC4_

nC4x_

tiny_

tol0_

tol1_

tol2_

tolb_

xthresh_

a

The equatorial radius in meters (readonly)

f

The flattening (readonly)

GEOGRAPHICLIB_GEODESIC_ORDER = 6#
nA1_ = 6#
nC1_ = 6#
nC1p_ = 6#
nA2_ = 6#
nC2_ = 6#
nA3_ = 6#
nA3x_ = 6#
nC3_ = 6#
nC3x_ = 15#
nC4_ = 6#
nC4x_ = 21#
maxit1_ = 20#
maxit2_ = 83#
tiny_ = 1.4916681462400413e-154#
tol0_ = 2.220446049250313e-16#
tol1_ = 4.440892098500626e-14#
tol2_ = 1.4901161193847656e-08#
tolb_ = 3.308722450212111e-24#
xthresh_ = 1.4901161193847656e-05#
CAP_NONE = 0#
CAP_C1 = 1#
CAP_C1p = 2#
CAP_C2 = 4#
CAP_C3 = 8#
CAP_C4 = 16#
CAP_ALL = 31#
CAP_MASK = 31#
OUT_ALL = 32640#
OUT_MASK = 65408#
__init__(a, f)[source]#

Construct a Geodesic object

Parameters:
  • a – the equatorial radius of the ellipsoid in meters

  • f – the flattening of the ellipsoid

An exception is thrown if a or the polar semi-axis b = a (1 - f) is not a finite positive quantity.

a#

The equatorial radius in meters (readonly)

f#

The flattening (readonly)

Inverse(lat1, lon1, lat2, lon2, outmask=1929)[source]#

Solve the inverse geodesic problem

Parameters:
  • lat1 – latitude of the first point in degrees

  • lon1 – longitude of the first point in degrees

  • lat2 – latitude of the second point in degrees

  • lon2 – longitude of the second point in degrees

  • outmask – the output mask

Returns:

a dict

Compute geodesic between (lat1, lon1) and (lat2, lon2). The default value of outmask is STANDARD, i.e., the lat1, lon1, azi1, lat2, lon2, azi2, s12, a12 entries are returned.

EMPTY = 0#

No capabilities, no output.

LATITUDE = 128#

Calculate latitude lat2.

LONGITUDE = 264#

Calculate longitude lon2.

AZIMUTH = 512#

Calculate azimuths azi1 and azi2.

DISTANCE = 1025#

Calculate distance s12.

STANDARD = 1929#

All of the above.

DISTANCE_IN = 2051#

Allow distance s12 to be used as input in the direct geodesic problem.

REDUCEDLENGTH = 4101#

Calculate reduced length m12.

GEODESICSCALE = 8197#

Calculate geodesic scales M12 and M21.

AREA = 16400#

Calculate area S12.

ALL = 32671#

All of the above.

LONG_UNROLL = 32768#

Unroll longitudes, rather than reducing them to the range [-180d,180d].

WGS84 = <RCAIDE.Library.Methods.Geodesics.Geodesics.Geodesic object>#