RCAIDE.Library.Methods.Powertrain.Converters.Generator.design_optimal_generator

design_optimal_generator#

design_optimal_generator(generator)[source]#

Sizes a generator to obtain the best combination of speed constant and resistance values by sizing the generator for a design RPM value.

Parameters:

generator (RCAIDE.Library.Components.Powertrain.Converters.DC_Generator) –

Generator component with the following attributes:
  • no_load_currentfloat

    No-load current [A]

  • nominal_voltagefloat

    Nominal voltage [V]

  • angular_velocityfloat

    Angular velocity [radians/s]

  • efficiencyfloat

    Efficiency [unitless]

  • design_torquefloat

    Design torque [N·m]

  • gearboxData
    Gearbox component
    • gear_ratiofloat

      Gear ratio [unitless]

  • design_angular_velocityfloat

    Design angular velocity [radians/s]

  • design_powerfloat

    Design power [W]

Returns:

generator

Generator with updated attributes:
  • speed_constantfloat

    Speed constant [unitless]

  • resistancefloat

    Resistance [ohms]

Return type:

RCAIDE.Library.Components.Powertrain.Converters.DC_Generator

Notes

This function uses numerical optimization to find the optimal values of speed constant and resistance that satisfy the generator’s design requirements. It attempts to solve the optimization problem with hard constraints first, and if that fails, it uses slack constraints.

The optimization process follows these steps:
  1. Extract generator design parameters (voltage, angular velocity, efficiency, power)

  2. Define optimization bounds for speed constant and resistance

  3. Set up hard constraints for efficiency and power

  4. Attempt optimization with hard constraints

  5. If optimization fails, retry with slack constraints

  6. Update the generator with the optimized parameters

The objective function maximizes the current output for a given voltage and angular velocity.

Major Assumptions
  • The generator follows a DC generator model

  • The optimization bounds are appropriate for the generator size

  • If hard constraints cannot be satisfied, slack constraints are acceptable

Theory The generator model uses the following relationships:

  • Current: \(I = (V - \omega/Kv)/R - I₀\)

  • Efficiency: \(\eta = (1 - (I₀\cdot R)/(V - \omega/Kv))\cdot(\omega/(V\cdot Kv))\)

  • Power: \(P = \omega\cdot I/Kv\)

where:
  • V is the nominal voltage

  • ω is the angular velocity

  • Kv is the speed constant

  • R is the resistance

  • I₀ is the no-load current

  • η is the efficiency

  • P is the power

objective(x, v, omega, etam, P, io)[source]#
hard_constraint_1(x, v, omega, etam, P, io)[source]#
hard_constraint_2(x, v, omega, etam, P, io)[source]#
slack_constraint_1(x, v, omega, etam, P, io)[source]#
slack_constraint_2(x, v, omega, etam, P, io)[source]#