RCAIDE.Library.Methods.Powertrain.Converters.Rotor.design_lift_rotor

design_lift_rotor#

design_lift_rotor(rotor, number_of_stations=20, solver_name='SLSQP', iterations=200, solver_sense_step=1e-06, solver_tolerance=1e-05, print_iterations=False)[source]#

Optimizes rotor chord and twist distribution to meet design power or thrust requirements.

Parameters:
  • rotor (RCAIDE.Library.Components.Powertrain.Converters.Rotor) –

    Rotor component with the following attributes:
    • tagstr

      Identifier for the rotor

    • hub_radiusfloat

      Hub radius of the rotor [m]

    • tip_radiusfloat

      Tip radius of the rotor [m]

    • rotation_ratefloat

      Rotation rate [rad/s]

    • freestream_velocityfloat

      Freestream velocity [m/s]

    • number_of_bladesint

      Number of blades on the rotor

    • design_lift_coefficientfloat

      Design lift coefficient

    • airfoil_datadict

      Dictionary of airfoil data

    • optimization_parametersData
      Optimization parameters
      • slack_constraintfloat

        Slack constraint value

      • ideal_SPL_dbAfloat

        Ideal sound pressure level [dBA]

      • multiobjective_aeroacoustic_weightfloat

        Weight for multiobjective aeroacoustic optimization

  • number_of_stations (int, optional) – Number of radial stations for blade discretization, default 20

  • solver_name (str, optional) – Name of the optimization solver, default ‘SLSQP’

  • iterations (int, optional) – Maximum number of iterations, default 200

  • solver_sense_step (float, optional) – Step size for finite difference gradient calculation, default 1E-6

  • solver_tolerance (float, optional) – Convergence tolerance for the optimizer, default 1E-5

  • print_iterations (bool, optional) – Flag to print optimization iterations, default False

Returns:

rotor – Optimized rotor with updated chord and twist distributions

Return type:

RCAIDE.Library.Components.Powertrain.Converters.Rotor

Notes

This function optimizes the chord and twist distributions of a lift rotor to meet either design power or thrust requirements. It uses RCAIDE’s native optimization framework with an objective function that balances aerodynamic performance and acoustic characteristics.

The optimization process follows these steps:
  1. Set up the optimization problem using the optimization_setup function

  2. Solve the optimization problem using the specified solver

  3. Report optimization results

  4. Update the rotor with the optimized parameters

The objective function is formulated as an aeroacoustic function that considers both efficiency and radiated noise, with the balance controlled by the multiobjective_aeroacoustic_weight parameter.

Major Assumptions
  • Rotor blade design considers one engine inoperative scenario

  • Either design power or thrust must be specified (not both)

  • The optimization balances aerodynamic performance and acoustic characteristics