RCAIDE.Library.Components.Powertrain.Sources.Battery_Modules.Lithium_Ion_LFP
Lithium_Ion_LFP#
- class Lithium_Ion_LFP(*args, **kwarg)[source]#
Bases:
Generic_Battery_Module
Class for modeling A123 26650 lithium iron phosphate battery characteristics
- tag#
Identifier for the battery module (default: ‘lithium_ion_lfp’)
- Type:
str
- power_split_ratio#
Power distribution ratio for multiple battery systems
- Type:
float, optional
- number_of_cells#
Number of cells in the module (default: 1)
- Type:
int
- maximum_energy#
Maximum energy storage capacity [J] (default: 0.0)
- Type:
float
- maximum_power#
Maximum power output [W] (default: 0.0)
- Type:
float
- maximum_voltage#
Maximum voltage output [V] (default: 0.0)
- Type:
float
- cell#
- Cell-specific properties
- chemistrystr
Battery chemistry type (default: ‘LiFePO4’)
- diameterfloat
Cell diameter [m] (default: 0.0185)
- heightfloat
Cell height [m] (default: 0.0653)
- massfloat
Cell mass [kg] (default: 0.03)
- surface_areafloat
Total cell surface area [m^2]
- volumefloat
Cell volume [m^3]
- densityfloat
Cell density [kg/m^3]
- electrode_areafloat
Active electrode area [m^2] (default: 0.0342)
- maximum_voltagefloat
Maximum cell voltage [V] (default: 3.6)
- nominal_capacityfloat
Rated capacity [Ah] (default: 2.6)
- nominal_voltagefloat
Nominal operating voltage [V] (default: 3.6)
- resistancefloat
Internal resistance [Ohms] (default: 0.022)
- specific_heat_capacityfloat
Cell specific heat [J/kgK] (default: 1115)
- radial_thermal_conductivityfloat
Radial thermal conductivity [W/mK] (default: 0.475)
- axial_thermal_conductivityfloat
Axial thermal conductivity [W/mK] (default: 37.6)
- discharge_performance_mapNearestNDInterpolator
Interpolator for voltage vs discharge characteristics
- Type:
Notes
The LFP cell model includes detailed thermal and electrical characteristics based on the A123 26650 cell. Performance data is interpolated from experimental measurements.
References
- [1] LithiumWerks (2019).A123 26650 Datasheet
https://a123batteries.com/product_images/uploaded_images/26650.pdf
- [2] Arora, S., & Kapoor, A. (2019). Experimental Study of Heat Generation
Rate during Discharge of LiFePO4 Pouch Cells. Batteries, 5(4), 70. https://doi.org/10.3390/batteries5040070
See also
RCAIDE.Library.Components.Powertrain.Sources.Battery_Modules.Generic_Battery_Module
Base battery module class
- energy_calc(state, bus, coolant_lines, t_idx, delta_t)[source]#
Computes the state of the LFP battery cell
- Parameters:
- Returns:
stored_results_flag (bool) – Flag indicating if results were stored
stored_battery_tag (str) – Identifier for stored results
- reuse_stored_data(state, bus, stored_results_flag, stored_battery_tag)[source]#
Reuses previously stored battery performance data
- Parameters:
state (Data) – Current system state
bus (Component) – Connected electrical bus
coolant_lines (Component) – Connected cooling system
t_idx (int) – Time index
delta_t (float) – Time step [s]
stored_results_flag (bool) – Flag indicating stored results exist
stored_battery_tag (str) – Identifier for stored results
- create_discharge_performance_map(raw_data)[source]#
Creates an interpolator for battery discharge voltage characteristics
This function processes raw battery test data to create an interpolation function that predicts battery voltage based on C-rate, temperature, and discharge capacity.
- Parameters:
raw_data (dict) – Dictionary containing battery test data with structure: {c_rate: {temperature: {‘discharge’: […], ‘voltage’: […]}}}
- Returns:
battery_data – Interpolator function that takes [C-rate, temperature, discharge_capacity] and returns voltage
- Return type:
NearestNDInterpolator
Notes
The function creates a 3D interpolation of voltage as a function of: - C-rate (discharge current relative to capacity) - Temperature - Discharge capacity (state of charge)
Uses nearest neighbor interpolation for computational efficiency. Linear interpolation is possible but increases computation time by ~30x.
References
- [1] Lin, X., Perez, H., Siegel, J. B., & Stefanopoulou, A. G. (2024).
“An Electro-Thermal Model for the A123 26650 LiFePO4 Battery.” University of Michigan. https://hdl.handle.net/2027.42/97341