RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.design_turbojet

design_turbojet#

design_turbojet(turbojet)[source]#

Designs a turbojet engine by computing performance properties and sizing components based on design conditions.

Parameters:

turbojet (Turbojet) –

Turbojet engine object containing design parameters and components
  • design_mach_numberfloat

    Design point Mach number [-]

  • design_altitudefloat

    Design point altitude [m]

  • design_isa_deviationfloat

    ISA temperature deviation [K]

  • working_fluidGas

    Working fluid object for gas properties

  • Components:
    • ram : Ram

    • inlet_nozzle : Compression_Nozzle

    • low_pressure_compressor : Compressor

    • high_pressure_compressor : Compressor

    • combustor : Combustor

    • high_pressure_turbine : Turbine

    • low_pressure_turbine : Turbine

    • core_nozzle : Supersonic_Nozzle

Returns:

Updates turbojet object attributes in-place:
  • mass_flow_rate_designfloat

    Design core mass flow rate [kg/s]

  • design_core_massflowfloat

    Core mass flow at design point [kg/s]

Return type:

None

Notes

This function performs the following steps:
  1. Computes atmospheric conditions at design point

  2. Sets up freestream conditions

  3. Links and analyzes flow through each component:
    • Ram inlet

    • Inlet nozzle

    • Low pressure compressor

    • High pressure compressor

    • Combustor

    • High pressure turbine

    • Low pressure turbine

    • Core nozzle

  4. Sizes the core based on design thrust requirements

  5. Computes static sea level performance

Major Assumptions
  • Quasi-one-dimensional flow

  • Each component operates in steady state

  • Perfect gas behavior in non-combustion sections

  • US Standard Atmosphere 1976 model

  • Earth gravity model

  • Design point defines core sizing

Theory The design process follows standard gas turbine design principles:

\[ \begin{align}\begin{aligned}\text{Mass flow continuity: } \dot{m}_{in} = \dot{m}_{out}\\\text{Power Balance: } W_{compressor} = W_{turbine}\\\text{Core sizing: } \dot{m}_{core} = \frac{F_{design}}{F_{sp} a_0}\end{aligned}\end{align} \]
where:
  • \(F_{design}\) is the design thrust

  • \(F_{sp}\) is the specific thrust

  • \(a_0\) is the freestream speed of sound

References

[1] Mattingly, J. D., “Elements of Gas Turbine Propulsion”, McGraw-Hill, 1996 [2] Walsh, P. P., Fletcher, P., “Gas Turbine Performance”, Blackwell Science, 2004

See also

RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.compute_turbojet_performance, RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.size_core, RCAIDE.Library.Methods.Powertrain.Propulsors.Common.compute_static_sea_level_performance