RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.design_turbojet
design_turbojet#
- design_turbojet(turbojet)[source]#
Designs a turbojet engine by computing performance properties and sizing components based on design conditions.
- Parameters:
turbojet (Turbojet) –
- Turbojet engine object containing design parameters and components
- design_mach_numberfloat
Design point Mach number [-]
- design_altitudefloat
Design point altitude [m]
- design_isa_deviationfloat
ISA temperature deviation [K]
- working_fluidGas
Working fluid object for gas properties
- Components:
ram : Ram
inlet_nozzle : Compression_Nozzle
low_pressure_compressor : Compressor
high_pressure_compressor : Compressor
combustor : Combustor
high_pressure_turbine : Turbine
low_pressure_turbine : Turbine
core_nozzle : Supersonic_Nozzle
- Returns:
- Updates turbojet object attributes in-place:
- mass_flow_rate_designfloat
Design core mass flow rate [kg/s]
- design_core_massflowfloat
Core mass flow at design point [kg/s]
- Return type:
None
Notes
- This function performs the following steps:
Computes atmospheric conditions at design point
Sets up freestream conditions
- Links and analyzes flow through each component:
Ram inlet
Inlet nozzle
Low pressure compressor
High pressure compressor
Combustor
High pressure turbine
Low pressure turbine
Core nozzle
Sizes the core based on design thrust requirements
Computes static sea level performance
- Major Assumptions
Quasi-one-dimensional flow
Each component operates in steady state
Perfect gas behavior in non-combustion sections
US Standard Atmosphere 1976 model
Earth gravity model
Design point defines core sizing
Theory The design process follows standard gas turbine design principles:
\[ \begin{align}\begin{aligned}\text{Mass flow continuity: } \dot{m}_{in} = \dot{m}_{out}\\\text{Power Balance: } W_{compressor} = W_{turbine}\\\text{Core sizing: } \dot{m}_{core} = \frac{F_{design}}{F_{sp} a_0}\end{aligned}\end{align} \]- where:
\(F_{design}\) is the design thrust
\(F_{sp}\) is the specific thrust
\(a_0\) is the freestream speed of sound
References
[1] Mattingly, J. D., “Elements of Gas Turbine Propulsion”, McGraw-Hill, 1996 [2] Walsh, P. P., Fletcher, P., “Gas Turbine Performance”, Blackwell Science, 2004
See also
RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.compute_turbojet_performance
,RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.size_core
,RCAIDE.Library.Methods.Powertrain.Propulsors.Common.compute_static_sea_level_performance