RCAIDE.Library.Methods.Powertrain.Propulsors.Turbojet.size_core
size_core#
- size_core(turbojet, conditions)[source]#
Sizes the core flow for a turbojet engine at the design condition.
- Parameters:
turbojet (RCAIDE.Library.Components.Propulsors.Turbojet) –
- Turbojet engine component with the following attributes:
- tagstr
Identifier for the turbojet
- reference_temperaturefloat
Reference temperature for mass flow scaling [K]
- reference_pressurefloat
Reference pressure for mass flow scaling [Pa]
- design_thrustfloat
Design thrust at the design point [N]
conditions (RCAIDE.Framework.Mission.Common.Conditions) –
- Flight conditions with:
- freestreamData
- Freestream properties
- speed_of_soundnumpy.ndarray
Speed of sound [m/s]
- energy.propulsors[turbojet.tag]Data
- Turbojet-specific conditions
- total_temperature_referencenumpy.ndarray
Reference total temperature [K]
- total_pressure_referencenumpy.ndarray
Reference total pressure [Pa]
- non_dimensional_thrustnumpy.ndarray
Non-dimensional thrust
- Returns:
- Results are stored in the turbojet object:
- design_mass_flow_ratefloat
Core mass flow rate at design point [kg/s]
- compressor_nondimensional_massflowfloat
Non-dimensional mass flow parameter [kg·√K/(s·Pa)]
- Return type:
None
Notes
This function determines the core mass flow rate required to produce the design thrust at the specified design conditions. It uses the non-dimensional thrust parameter to scale the mass flow appropriately.
- Major Assumptions
Perfect gas behavior
Design point is at maximum throttle (throttle = 1.0)
Theory The core mass flow rate is calculated from the design thrust and non-dimensional thrust:
\[\dot{m}_{core} = \frac{F_{design}}{F_{sp} \cdot a_0 \cdot \text{throttle}}\]The non-dimensional mass flow parameter is then calculated:
\[\dot{m}_{hc} = \frac{\dot{m}_{core}}{\sqrt{\frac{T_{ref}}{T_{t,ref}}} \cdot \frac{P_{t,ref}}{P_{ref}}}\]References
[1] Cantwell, B., “AA283 Course Notes”, Stanford University. https://web.stanford.edu/~cantwell/AA283_Course_Material/